在前一篇深入了解.NET中继承和多态(上) 中我们已经知道了对象在内存中的布局结构,这一篇我们讲主要研究继承和多态。主要是通过列子来看问题。其中会涉及到使用SOS进行扩展调试和查看IL代码。

 

一 调用方法的IL指令

 

 

我们知道在.NET中一共有三种方法:实例方法,静态方法和虚方法。当程序被编译成IL代码时,我们可以看到有两个调用方法的IL指令,分别是callcallvirt我们首先看下下面的列子:

    class Cpu
    {   
        public Cpu()
        {
            Console.WriteLine("初始化Cpu");
        }
        public void fun()
        {
            Console.WriteLine("Cpu的方法/n");
        }
        public static void fun2(){ }
        
        public virtual void fun3(){ }
        
        public override string ToString()
        {
            return base.ToString();
        }
    }
    class Program
    {
        static void Main(string[] args)
        {
            Cpu c1 = new Cpu();
            c1.fun();           //调用实例方法 
            Cpu.fun2();       //调用静态方法 
            c1.fun3();          //调用虚方法 
            c1.ToString();     //调用重写基类的虚方法 
        }
    }

以下是Main方法的IL代码

继续阅读

注意:在写完文章后很久才发现自己文章中【编译】两个字的让人误解,比如方法槽偏移量是在编译时获得的,其实我想表达的是JIT编译,而不是指IL编译。我大概修改了一些关键地方,但是可能有很多遗漏。大家要自己判断了,哈!

封装、继承、多态是面向对象的最重要的3个特点。但是想真的弄明白他们其中的奥秘还是的费一番功夫。记得在学校学习C++的时候,讲到这个地方,自己早已是一头雾水,当时还在想,弄成private做什么,多麻烦啊。到了多态,继承更是昏死了。今天就来深入了解下其中的奥秘吧。本文主要是从内存结构出发来讲解.NET中的继承和多态,因为内存布局的不同所以和其他语言中的继承多态可能有一定区别。

 

 

一 笔试题目

 

 class Program
    {
        static void Main(string[] args)
        {
            Cpu c1 = new Cpu();
            c1.fun();
            Cpu c2 = new IntelCpu();
            c2.fun();
            Cpu c3 = new CoreCpu();
            c3.fun();
            IntelCpu  c4 = new CoreCpu();
            c4.fun();
        }
    }
    class Cpu
    {   
        public Cpu()
        {
            Console.WriteLine("初始化Cpu");
        }
        public virtual void fun()
        {
            Console.WriteLine("Cpu的方法/n");
        }
    }
    class IntelCpu : Cpu
    {
        public IntelCpu()
        {
            Console.WriteLine("初始化IntelCpu");
        }
        public override void fun()
        {
            Console.WriteLine("IntelCpu的方法/n");
        }
    }
    class CoreCpu : IntelCpu
    {
        public CoreCpu()
        {
            Console.WriteLine("初始化CoreCpu");
        }
        public new void fun()
        {
            Console.WriteLine("CoreCpu的方法/n");
        }
    }

上面是我们常见的关于继承和多态的题目。或许很多人都有一套做这种题目的方法,能够让你准确的得到答案,但是我们了解继承和多态不是为了背公式,不是为了做题目,是未来灵活使用。所以有必要弄清楚她内部到底是怎么实现的。或许平时可能用不上,但是我认为还是会有所帮助的。

继续阅读

前端时间在一个.NET和C通信的接口测试中发现一个问题,由.NET发送到C的中文字显示是问号。应该是编 码的问题,但是具体是什么原因呢?自己不太清楚,然后找了一些相关资料看了下,总算对字符和编码有了 一定了解。

 

 

一 简单的程序

 

string msg = "欢 迎访问cc_net";
int l1 = System.Text.Encoding.Default.GetByteCount (msg);
int l2 = System.Text.Encoding.ASCII.GetByteCount (msg);
int l3 = System.Text.Encoding.Unicode.GetByteCount (msg);
int l4 = System.Text.Encoding.UTF8.GetByteCount (msg);
int l5 = System.Text.Encoding.BigEndianUnicode.GetByt eCount(msg);
int l6 = System.Text.Encoding.UTF32.GetByteCount (msg);
int l7 = msg.Length;

以上是一段计算字符串长度的信息 。你能准确说出他们的值吗?? 下面是他们的实际结果

 

继续阅读

好久没有写BLOG了,之前出差了2个月,都没怎么看书,也没有太多时间写。回来后一个月人也有点放松。现在开始还是得继续努力啊。不废话了,下面就介绍下Linux系统的分区和挂载

 

 

一 Linux的安装

 

Linux的安装是比较简单的,整个过程和安装XP差不多。首先BIOS中设置从光驱启动,(不知道怎么设置?那你还是先装虚拟机玩玩吧!)会要你选安装模式,直接回车用图形界面;然后Linux安装程序会有一个检查光盘的过程,这里可以选择跳过【Skip】;然后等待初始化工作,系统就可以进入到安装界面了;进入安装界面后就可以进行一些设置(区域,语言,时间,密码,分区等),设置完成后选择要安装的组件,安装完成就一切OK了。

 

 

二 Linux系统分区

 

这里我说的是指在分区时采用手动分区,而不是自动分区。Linux分区和Windows有很大的区别,你无法在Linux中看到诸如Windows中的C盘,D盘。这确实会让我们这些用惯了WIN操作系统的人感到很不习惯。其实理解了Linux分区结构后就很清晰了。

 

1: 硬盘分区

 

首先我们来看硬盘分区,分区是和操作系统没有任何关系的,因为她是在安装操作系统之前进行了。我们可以简单的认识,分区就是把硬盘分割为不同的区域。在谈具体分区前,有个比较简单的问题想问下大家:硬盘问什么要分区?…..哈哈!怎么样,不是很好回答吧,首先是因为操作系统在启动时会通过MBR来获得操作系统文件所在的分区,所以一个可引导分区是不能缺少的。这也是为什么新买的硬盘不能直接用的原因。而且进行多个分区是为了提高管理效率,所有东西放在一个分区,OS管理其起来效率比较低,因为每次要检索的东西太多。

下面我们简单看下硬盘的分区结构:

硬盘主引导扇区 = 硬盘主引导记录(MBR)+ 硬盘分区表(DPT),一共是512个字节,其中MBR是446,分区表一共64字节,然后是2个字节的结束标志。引导扇区存储在硬盘的0头0道1扇区,也就是Boot Sector。(如图1)

操作系统在启动时通过BIOS(BIOS实际是一个基础输入输出系统,用于和硬件打交到)程序把Boot Sector读入内存,然后执行其中MBR,这个时候BIOS就把启动交给MBR控制;MBR作用是在4个分区表中搜索标志为活动的分区,找到后把活动分区的第一个扇区读入内存,然后开始执行它,运行特定系统的启动程序(LILO,GRUB,NT Loader);这个时候启动的启动就交给了操作系统的引导程序来控制了。然后操作系统进行一系列的初始化,最后把系统交给系统内核进行管理。

图 1

 

 

2:分区类型

 

上面介绍了硬盘分区结构和系统启动,下面就看下各个分区。硬盘分区一共有3种,主分区,扩展分区和逻辑分区(如图2)

图 2

 

主分区上可以安装操作系统,因为MBR中记录的主分区信息,系统启动时会到主分区来查找操作系统引导文件,所以操作系统的引导文件必须在主分区中,否则系统就无法启动了。而最多只支持4个主分区(由于硬盘仅仅为分区表保留了64个字节的存储空间,而每个分区的参数占据16个字节,故主引导扇区中总计可以存储4个分区的数据。操作系统只允许存储4个分区的数据。所以为了建立更多的逻辑磁盘供操作系统使用,系统引入了扩展分区的概念)。

 

扩展分区并不是一个真实存在的分区,它只是内存管理链表中的一个指针,指示出那一块区域是扩展分区。上面也提到出现扩展分区的原因。所以一个扩展分区也是一个主分区。而通过在扩展分区中在划分逻辑分区对系统分区进行扩展。实际上所有的逻辑分区都是在一个分区类,只是逻辑上分开,这也是叫逻辑分区的原因。但对用户来说一切都是透明了,我们看起来系统中有很多分区。

 

 

3:Linux分区

 

其面介绍了硬盘分区结构和分区类型,这里就要讲讲Linux系统中分区的表示了。首先回顾下WINDOWS下分区的情况。在WINDOWS系统里,我们看到,每个分区都有一个名字,C,D,E,F….实际这是OS使用的一种映射。通过操作系统中看到的这些盘符和分区联系起来,然后我们就可以在这些盘符下读写文件,操作系统负责把文件写入到硬盘分区。在WINDOWS中盘符名称和分区是对应了。

 

我们在来看看LINUX下的情况,在Linux下使用/dev/hda,hdb..这样来标识硬盘,具体硬盘上的分区就用/dev/hda1,hda2,来表示.最后的数字代表分区号,主分区是1-4,逻辑分区是5以后的数字。Linux中最大的区别就是我们在也看不到所谓的盘符了。Liunx采用树形的文件管理系统,也就是在Linux系统中,可以说已经没有分区的概念了。分区在Linux和其他设备一样都只是一个文件。要使用一个分区必须把它加载到文件系统中。这可能难于理解,继续往下看。

 

Linux中树形的文件结构,最顶层是/ 目录。在安装系统时,你必须选择把一个主分区挂载在/ 目录下,因为系统需要安装在/挂载的主分区下。否则系统会提示你。这里又一次提到了挂载。所以挂载就是把目录和分区连接起来,和上面说的WINDOWS下的映射关系是一样的。不同的是WINDOWS是把分区映射到一个盘符,而LINUX下是映射到一个目录。 这是理解他们不同最重要的地方,而导致不同的是因为文件系统结构不同。

 

 

4:Linux文件系统

 

上面说了Linux的文件系统是树形的,安装的系统必须是在/ 目录下,因为/目录下挂载了一个主分区。/目录是树形的根,其他所有目录都是他的子节点。

 

图 3

 

我们看上图3 可以更好的理解, Linux整个系统结构如上, 我们安装系统的时候已经把分区1挂载到 / 目录下了. 而这个时候没有挂载其他任何分区,所以/ 目录下的所有其他目录都在这个分区下,也就是说,我在任何目录下读写操作实际都是操作的这个1号分区。

 

如果我们想使用其他分区,就必须把这个分区挂载到一个目录下,这个目录可以是已经存在的目录,比如/home,也可以是我们自己建立的目录,比如/oracle。当然有些目录比如/lib, /dev, /etc, /usr这些都不能挂载其他分区,因为他们都存放着系统需要的文件,一旦被挂载其他分区,那没OS就无法找到所需的文件,系统就会崩溃。比如我们把分区2挂载到/usr/X11目录下时,系统就无法通过X11目录找到分区1上的文件,这个时候系统图形界面就无法使用了. 虽然文件还在硬盘上。前面说过,目录 — 分区 是通过挂载吧他们联系起来。你更换了分区,也就破坏了联系,就无法在找到之前的文件了。我们在看分区5和分区6,我们把它挂载到/home/ftp 和 /oracle目录下,这个时候我们在操作这2个目录是,就是操作对用的分区了.

 

而WINDOWS就没这么复杂,她不是采用树形的结构,每个分区对应一个盘符,一旦建立映射关系就无法在修改。实际上,LINUX的每个挂载了分区的目录就相当于WINDOWS系统中的盘符,比如上面的,/home/ftp 和 /oracle目录我们就可以把她看做一个盘符和一个分区关联,只是因为LINUX文件系统,使得她更加灵活,所以也更复杂和难以理解。

 

 

 

三    Linux中的设置

 

1:查看Linux分区信息

 

前面介绍完了Linux文件系统和分区的关系,大家应该对分区有很清楚的认识了。下面我们就关注下Linux系统中如何查看分区情况。

在Linux系统中我们使df -u 命令就可以看到系统目前分区情况

Filesystem            容量      已用      可用        已用%    挂载点
/dev/hda1              21G       6.7G        13G        35%          /
none                     506M       0          506M       0%           /dev/shm
/dev/hda2              11G       5.2G        5.0G       52%         /home
/dev/hda5              16G       9.3G        5.1G       65%         /oracle
/dev/hda6              19G       201M      18G        2%           /usr1

从中我们可以看到目前系统加载了4个分区,其中2个主分区(hda1,hda2)和两个逻辑分区(hda5,hda6)。也可以看到他们的加载点。其中hda1分区是系统分区,上面安装了操作系统。而/home,/orace,/usr1分别加载了其他3个分区。

 

而通过fdisk -l 命令可以看到目前系统中所有分区的信息,如下表

Disk /dev/hda: 80.0 GB, 80026361856 bytes
255 heads, 63 sectors/track, 9729 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
   Device Boot      Start         End      Blocks   Id  System
/dev/hda1   *           1        2677    21502971   83  Linux
/dev/hda2            2678        4079    11261565   83  Linux
/dev/hda3            4080        9729    45383625    5  Extended
/dev/hda5            4080        6080    16073001   83  Linux
/dev/hda6            6081        8581    20089251   83  Linux
/dev/hda7            8582        9729     9221278+  82  Linux swap

可以看到hda3是一个主分区,但实际上他是一个扩展分区,前面我们介绍了扩展分区,她实际会占用一个主分区,因为MBR只能记录4个分区信息. 由一个比较特殊的是hda7,她是一个交换分区,在WINDOWS系统中就是虚拟内存文件. 所以用df命令是查看不到她的.

这里顺便说下为什么标识为/dev/hda,前面简单提到过,LINUX下所有设备都被认为是文件,而/dev目录存放所有系统设备文件的,而一个分区就是一个文件,名字就是分区的名字.

 

 

2:Linux分区挂载

 

常用的挂载和卸载分区及文件系统的命令是mount和umount ,比如 mount /orace  /dev/hda5,就是把5号分区挂载到/oracle目录下。具体的命令格式就不介绍了,网上很多,也可以使用man来查看。我们这里主要讲讲自动挂载。并经每次都要使用命令手动挂载确实很麻烦,我们可以通过编辑/etc/fstab文件来让系统开机时自动加载(这里介绍的是系统安装好后,使用fdisk分区后,进行加载)

 

vi /etc/fstab 就可以看到一下信息:

# This file is edited by fstab-sync - see 'man fstab-sync' for details
LABEL=/                   /                       ext3      defaults        1 1
none                           /dev/pts            devpts  gid=5,mode=620  0 0
none                           /dev/shm           tmpfs   defaults        0 0
LABEL=/home          /home               ext3    defaults        1 2
none                          /proc                  proc    defaults        0 0
none                          /sys                   sysfs   defaults        0 0
LABEL=/oracle        /oracle                ext3    defaults        1 2
LABEL=/usr1           /usr1                  ext3    defaults        1 2
LABEL=SWAP-hda7         swap     swap    defaults        0 0
/dev/hdc                /media/cdrom            auto    pamconsole,fscontext=system_u:object_r:removable_t,exec,no  auto,managed 0 0

这个文件第一列就是具体的分区,第2列是分区挂载的目录,第3列是文件格式,第4列是挂载规则,第5列是备份;0为从不备份,或显示上次至今备份之天数;第7列是启动时fsck检查顺序,0为不检查, “/”永远为1;

了解了各个字段我们就具体来看下,其中/ 目录系统会自动写到这个文件中,因为不加载系统如何启动??那几个none挂载的我还不太清楚。我们具体看看我们实际分区的挂载。我们可以在linux中使用fdisk 来进行分区。比如我们用fdisk划分了hda2,5,6,7这4个分区。但我们想使用他们的时候,我们必须手动添加。

 

我们可以通过一下命令来完成自动加载

mkfs.ext3 /dev/hdax
e2lable /dev/hda2  /home  LABEL=/home          /home               ext3    defaults        1 2     //修改Fstab

分区要使用首先要格式化,目前使用较多的是ext3文件格式, 他相对于ext2更安全,更快,但是比较浪费空间了,我80G硬盘用ext3后,可用的只有67G左右,XP下 NTFS和FAT32可是有70G左右的.格式话之后就可以给分区设置一个标签名(一般和要挂载的目录名字相同),然后在fstab文件中添加一行。大家可能有疑问,第一列不是标识分区吗,这里为什么要用标签,其实你也可以用  /dev/hda5 ,这里LABLE是一个分区的标签,你可以把它当作分区的名字。

以上就是对一个新建分区自动加载的过程。开机后我们可以通过 vi /etc/mtab查看已经加载的分区和文件系统。

 

 

3:关于交换分区

 

目前计算机内存越来越大,LINUX和VISTA都使用了内存做缓存,cached和buffers的区别在于一个是读一个是写。目前系统最大的开销都是I/O操作,通过buffers先把文件读到内存,这样就减少了I/O,而使用cached就是把要写入的文件放到缓存中,操作系统一次写入磁盘,减少I/O。而交换分区是为了解决内存不足,而目前交换分区使用的很少,所以不需要给她分配过大的空间。当然作为小内存机器还是很有用。

我们可以单独划分一个分区作为交换分区,比如我们使用前门的hda7作为交换分区。因为他是交换分区,所以文件系统不能是ext3格式,必须是交换分区格式.

mkswap -v1 -L SWAP-hda7 /dev/hda7
swapon -a
LABEL=SWAP-hda7     swap       swap    defaults        0 0    //修改Fstab

用以上的mkswap命令就可以把一个分区格式化为交换分区文件系统,其中-L 参数是设置分区的LABLE名。然后使用swapon -a来关在系统中所有交换分区。最后修改fstab,加入这一句, 开机就可以自动加载交换分区了。

 

 

4:加载其他文件系统

 

除了加载Linux系统分区以外,我们还可以加载光驱,软驱,USB存储设备,设置是WINDOWS文件系统。方法和上面完全一样,这里就不废话了。最后要注意的是修改fstab要注意,如果设置的不正确,可能导致系统无法启动.所以编辑时要小心.

 

 

 

参考资料:

 

Linux系统引导过程及硬盘分区结构论述